Zero-Knowledge Proofs and String Commitments Withstanding Quantum Attacks
نویسندگان
چکیده
The concept of zero-knowledge (ZK) has become of fundamental importance in cryptography. However, in a setting where entities are modeled by quantum computers, classical arguments for proving ZK fail to hold since, in the quantum setting, the concept of rewinding is not generally applicable. Moreover, known classical techniques that avoid rewinding have various shortcomings in the quantum setting. We propose new techniques for building quantum zero-knowledge (QZK) protocols, which remain secure even under (active) quantum attacks. We obtain computational QZK proofs and perfect QZK arguments for any NP language in the common reference string model. This is based on a general method converting an important class of classical honestverifier ZK (HVZK) proofs into QZK proofs. This leads to quite practical protocols if the underlying HVZK proof is efficient. These are the first proof protocols enjoying these properties, in particular the first to achieve perfect QZK. As part of our construction, we propose a general framework for building unconditionally hiding (trapdoor) string commitment schemes, secure against quantum attacks, as well as concrete instantiations based on specific (believed to be) hard problems. This is of independent interest, as these are the first unconditionally hiding string commitment schemes withstanding quantum attacks. Finally, we give a partial answer to the question whether QZK is possible in the plain model. We propose a new notion of QZK, non-oblivious verifier QZK, which is strictly stronger than honest-verifier QZK but weaker than full QZK, and we show that this notion can be achieved by means of efficient (quantum) protocols.
منابع مشابه
Computationally Binding Quantum Commitments
We present a new definition of computationally binding commitment schemes in the quantum setting, which we call “collapse-binding”. The definition applies to string commitments, composes in parallel, and works well with rewindingbased proofs. We give simple constructions of collapse-binding commitments in the random oracle model, giving evidence that they can be realized from hash functions lik...
متن کاملFine-Tuning Groth-Sahai Proofs
Groth-Sahai proofs are efficient non-interactive zero-knowledge proofs that have found widespread use in pairing-based cryptography. We propose efficiency improvements of Groth-Sahai proofs in the SXDH setting, which is the one that yields the most efficient non-interactive zero-knowledge proofs. – We replace some of the commitments with ElGamal encryptions, which reduces the prover’s computati...
متن کاملFully Simulatable Quantum-Secure Coin-Flipping and Applications
We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment schemes which we show how to construct in the given setting. We then show that the interactive ge...
متن کاملar X iv : 1 10 8 . 63 13 v 1 [ qu an t - ph ] 3 1 A ug 2 01 1 Superposition Attacks on Cryptographic Protocols
Abstract. Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy some constraint, there is some problem the adversary cannot solve, such as compute a certain piece of information. In this paper, we introduce a fundamentally new model of quantum attacks on c...
متن کاملEfficient Statistical Zero-Knowledge Authentication Protocols for Smart Cards Secure Against Active & Concurrent Attacks
We construct statistical zero-knowledge authentication protocols for smart cards based on general assumptions. The main protocol is only secure against active attacks, but we present a modification based on trapdoor commitments that can resist concurrent attacks as well. Both protocols are instantiated using lattice-based primitives, which are conjectured to be secure against quantum attacks. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004